Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers.
نویسندگان
چکیده
The 5' and 3' splice sites within an intron can, in principle, be joined to those within any other intron during pre-mRNA splicing. However, exons are joined in a strict 5' to 3' linear order in constitutively spliced pre-mRNAs. Thus, specific mechanisms must exist to prevent the random joining of exons. Here we report that insertion of exon sequences into an intron can inhibit splicing to the downstream 3' splice site and that this inhibition is independent of intron size. The exon sequences required for splicing inhibition were found to be exonic enhancer elements, and their inhibitory activity requires the binding of serine/arginine-rich splicing factors. We conclude that exonic enhancers can act as barriers to prevent exon skipping and thereby may play a key role in ensuring the correct 5' to 3' linear order of exons in spliced mRNA.
منابع مشابه
Pre-mRNA splicing in the new millennium.
The past year has witnessed refinements in models of spliceosome assembly pathways and in the understanding of how splicing factors of the serine/arginine-rich (SR) protein family function. The role of splicing in human genetic diseases has also received a lot of attention recently as exonic splicing enhancers become better understood.
متن کاملDepletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene
Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and...
متن کاملSerine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing.
Two distinct functions have been proposed for the serine-arginine (SR)-rich family of splicing factors. First, SR proteins are essential splicing factors and are thought to function by mediating protein-protein interactions within the intron during spliceosome assembly. Second, SR proteins bind to exonic enhancer sequences and recruit spliceosome components to adjacent introns. The latter activ...
متن کاملAn Exonic Splicing Enhancer in Human IGF-I Pre-mRNA Mediates Recognition of Alternative Exon 5 by the Serine-Arginine Protein Splicing Factor-2/ Alternative Splicing Factor.
The human IGF-I gene has six exons, four of which are alternatively spliced. Variations in splicing involving exon 5 may occur, depending on the tissue type and hormonal environment. To study the regulation of splicing to IGF-I exon 5, we established an in vitro splicing assay, using a model pre-mRNA containing IGF-I exons 4 and 5 and part of the intervening intron. Using a series of deletion m...
متن کاملDeletion of the N-terminus of SF2/ASF Permits RS-Domain-Independent Pre-mRNA Splicing
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 14 شماره
صفحات -
تاریخ انتشار 2005